ПATIBIA UПIVERSITY
 OF SCIEMCE AMD TECHMOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: \quad Bachelor of Science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BSAM	LEVEL: 7
COURSE CODE: NUM702S	COURSE NAME: NUMERICAL METHODS 2
SESSION: \quad JANUARY 2023	PAPER: THEORY
DURATION: $\quad 3$ HOURS	MARKS: 93

SECOND OPPORTUNITY/SUPPLEMENTARY - QUESTION PAPER	
EXAMINER	Dr S.N. NEOSSI NGUETCHUE
MODERATOR:	Prof S.S. MOTSA

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations. All numerical results must be given using 5 decimals where necessary unless mentioned otherwise.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Attachments

None

Problem 1 [32 Marks]

1-1. Find the best function in the least-squares sense that fits the following data points and is of the form $f(x)=a \sin (\pi x)+b \cos (\pi x):$

x	-1	$-1 / 2$	0	$1 / 2$	1
y	-1	0	1	2	1

1-2. Find the Padé approximation $R_{2,2}(x)$ for $f(x)=\tan (\sqrt{x}) / \sqrt{x}$ starting with the MacLaurin expansion

$$
\begin{equation*}
f(x)=1+\frac{x}{3}+\frac{2 x^{2}}{15}+\frac{17 x^{3}}{315}+\frac{62 x^{4}}{2835}+\cdots . \tag{12}
\end{equation*}
$$

1-3. Use the result in 1-2. to establish $\tan (x) \approx R_{5,4}=\frac{945 x-105 x^{3}+x^{5}}{945 x-420 x^{2}+15 x^{4}}$.
1-4. Compare the following approximations to $f(x)=\tan (x)$

$$
\begin{align*}
& \text { Taylor: } T_{9}(x)=1+\frac{x}{3}+\frac{2 x^{2}}{15}+\frac{17 x^{3}}{315}+\frac{62 x^{4}}{2835} \tag{12}\\
& \text { Padé: } R_{5,4}(x) \quad \text { (given in 1-3.) }
\end{align*}
$$

on the interval $[0,1.4]$ using 8 equally spaced points x_{k} with $h=0.2$. Your results should be correct to 7 significant digits.

Problem 2 [25 Marks]
For any non negative interger n the Chebyshev polynomial of the first kind of degree n is defined as

$$
T_{n}(x)=\cos \left[n \cos ^{-1}(x)\right], \text { for } x \in[-1,1] .
$$

2-1. Use the identity/formula: $\sum_{k=0}^{N} \cos (\varphi+k \alpha)=\frac{\sin \frac{(N+1) \alpha}{2} \cos \left(\varphi+\frac{N}{2} \alpha\right)}{\sin \frac{\alpha}{2}}$ to show that:

$$
\begin{equation*}
\sum_{k=0}^{N} T_{m}\left(x_{k}\right) T_{n}\left(x_{k}\right)=0, \text { for } m \neq n, \tag{12}
\end{equation*}
$$

where $x_{k}=\cos \left[\frac{(2 k+1) \pi}{2(N+1)}\right], 0 \leq k \leq N$, are the roots of T_{N+1}.
2-2. Compute the expressions of the first five Chebyshev polynomials of the first kind $T_{2}, T_{3}, T_{4}, T_{5}$ and T_{6}.

2-3-1. Find $P_{6}(x)$ the sixth MacLaurin polynomial for $f(x)=x e^{x}$.
2-3-2. Use Chebyshev economisation to economise $P_{6}(x)$ once.
Problem 3 [36 Marks]
3-1. Determine the number n so that the composite Simpson's rule for $2 n$ subintervals can be used to compute the following integral with an accuracy of 5×10^{-9}.

$$
\int_{2}^{7} d x / x
$$

3-2. State the three-point Gaussian Rule for a continuous function f on the interval $[-1,1]$.
3-3. Use the Composite Simpson's rule with four equal subintervals to approximate the following integral and compare your result with the one obtained when using the three-point Gaussian Rule

$$
I=\int_{-1}^{1}\left(2 x^{4}+5\right) d x
$$

3-4. Was the comparison in 3-3. predictable? Justify your answer.
3-5. The matrix A and its inverse are A^{-1} are given below

$$
A=\left[\begin{array}{cc}
1 / 2 & -1 \\
-1 & 1
\end{array}\right], \quad \quad A^{-1}=\left[\begin{array}{ll}
-2 & -2 \\
-2 & -1
\end{array}\right]
$$

- Use the power method to find the eigenvalue of the matrix A with the smallest absolute value.

Start with the vector $\mathrm{x}^{(0)}=(1,0)^{T}$ and perform three iterations.

